a2 United States Patent

Duyanovich et al.

US008655623B2

(10) Patent No.:

(45) Date of Patent:

US 8,655,623 B2
Feb. 18, 2014

(54) DIAGNOSTIC SYSTEM AND METHOD 6,801,940 Bl 10/2004 Moran et al.
7,031,878 B2 4/2006 Cuddihy et al.
(75) Inventors: Linda M. Duyanovich, Saratoga, CA ;’522’%2 gé 15%88? g;;ﬁl& al
(US); Kristal T. Pollack, San Francisco, 7395,187 B2 7/2008 Duyanovich et al.
CA (US); Elizabeth S. Richards, 2002/0123983 Al 9/2002 Riley etal.
H . 2003/0046390 Al* 3/2003 Balletal. .... ... 709/224
chitl:ﬁlc’;fai\g]:n(:}ssgn ?:;‘:‘gg%‘s) 2003/0110007 Al* 62003 McGeeetal. ... 702/179
’ ’ (Continued)
(73) Assignees: International Business Machines
Corporation, Armonk, NY (US); FOREIGN PATENT DOCUMENTS
National Security Agency, Washington, WO W09912167 9/1999
DC (US) WO WO 2004/088443 Al 10/2004
WO W02006017027 2/2006
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.8.C. 154(b) by 775 days. Shah, et al., “Challenges in the Detection, Diagnosis and Visualiza-
tion of Controller Performance Data,” The IEEE Control & Automa-
(21) Appl. No.: 11/674,198 tion Professional Network, Extended version of a paper that was
(22) Filed Feb. 13. 2007 presented at Control Systems—2004, pp. 7-21.
iled: eb.
’ (Continued)
(65) Prior Publication Data
Primary Examiner — Sujoy Kundu
US 2008/0195369 Al Aug. 14,2008 Assistant Examiner — Elias Desta
74) Attorney, Agent, or Firm — Gibb & Riley, LLC
(51) Int.Cl @ 48 Y
) [GJZ;%f7/003 (2006.01) (57) ABSTRACT
USPC oo 702/182; 702/59; 702/82; 702/84;  Disclosedare system and method embodiments for determin-
702/184 ing the root-causes of a performance objective violation, such
(58) Field of Classification Search as an end-to-end serv.ice leve.l o.bjection (SLO) Violat.ion, ina
large-scale system with multi-tiered applications. This deter-
USPC oot 702/59, 82, 84, 184 RO . :
L . mination is made using a hybrid of component-level snap-
See application file for complete search history. . L .
shots of the state of the system during a period in which an
(56) References Cited abnormal event occurr.ed (ie., ble}ck box. mapping) aqd of
known events and their causes (i.e., white-box mapping).
U.S. PATENT DOCUMENTS Specifically, in response to a query about a violation (e.g.,
why did the response time for application al increase from rl
?gg?gg? ﬁ é; }ggg hmie et alf cal to r2), a processor will access and correlate the black-box and
6:006:016 A * 12/1999 Fa?gi)liln;(z ;Le a """"""" 714/48 white-box mapping; to determine a short-list of probable
6.115393 A * 9/2000 Engeletal. .. . 370/469  causes for the violation.
6,374,251 B1* 4/2002 Fayyadetal. ......ccccoeoinennnn 1
6,701,459 B2 3/2004 Ramanathan et al. 18 Claims, 7 Drawing Sheets

13 Primary System
‘Application Interconnect 130
133 Servers Switches 134

132

= |

Performance Monitoring System

e —
Measured Performance 103

Parameters

Abnormality Detection System

106
Modets Of Normality And
Abnormat Events
108

S

State Generator 110

112

n—
State Changes

118

‘{ Queries

Processer




US 8,655,623 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0149919 Al*
2003/0167180 Al
2004/0015719 Al*
2004/0123029 Al
2004/0163079 Al
2004/0243699 Al
2004/0260678 Al
2005/0038818 Al
2005/0091227 Al
2005/0125710 Al
2005/0203792 Al
2005/0216325 Al

8/2003 Greenwald et al. ............. 714/43
9/2003 Chung et al.
1/2004 Leeetal. ...
6/2004 Dalal et al.
8/2004 Noy et al.
12/2004 Koclanes et al.
12/2004 Verbowski et al.
2/2005 Hooks
4/2005 McCollum et al.
6/2005 Sanghvi
9/2005 Kuppe et al.
9/2005 Ziad et al.

713/201

2005/0265331 Al* 12/2005 Stolfo ... 370/389
2006/0036619 Al 2/2006 Fuerst et al.
2006/0085854 Al* 4/2006 Agrawaletal. ... 726/23

2006/0112135 Al
2006/0123278 Al
2006/0129998 Al
2006/0150163 Al
2007/0168915 Al*

5/2006 Warshawsky

6/2006 Dini et al.

6/2006 Florissi et al.

7/2006 Chandane

7/2007 Fabbioetal. ................. 717/101

OTHER PUBLICATIONS

Pollack, et al., “Genesis: A Scalable Self-Evolving Performance
Management Framework for Storage Systems,” IEEE Computer
Society, Proceedings of the 26" IEEE International Conference on
Distributed Computing Systems, 2006, 10 pages total.

U.S. Appl. No. 11/348,010, filed Feb. 6, 2006, Duyanovich, et al.

Chung, et al., “Using Information from Prior Runs to Improve Auto-
mated Tuning Systems, Proceedings of SC” 04, Nov. 2004, pp. 1-12.
Deng, et al., “High-Performance Robust Speech Recognition Using
Stereo Training Data,” Proceedings of International Conference on
Acoustics, Speech, and Signal Processing, May 2001, pp. 301-304.
Chron et al., U.S. Appl. No. 11/674,197, Office Action Communica-
tion, Aug. 20, 2009, 12 pages.

Chron et al., U.S. Appl. No. 11/674,197, Office Action Communica-
tion, Feb. 3, 2010, 13 pages.

Chron et al., U.S. Appl. No. 11/674,197, Office Action Communica-
tion, Jul. 23, 2010, 12 pages.

U.S. Appl. No. 11/674,197, filed Feb. 13, 2007, Notice of Allowance
Communication, Apr. 25, 2012, 13 pages.

U.S. Appl. No. 11/348,010, filed Feb. 6, 2006, Duyanovich, et al.,
Pending Publication.

Chung, et al., “Using Information from Prior Runs to Improve Auto-
mated Tuning Systems,” Proceedings of SC04, Nov. 2004, pp. 1-12.
Anderson, E., “HPL-SSP-2001-4: Simple table-based modeling of
storage devices,” Jul. 14, 2001, pp. 1-4.

Deng, et al., “High-Performance Robust Speech Recognition Using
Stereo Training Data,” Proceeding of International Conference on
Acoustics, Speech, and Signal Processing, May 2001, pp. 301-304.
Gullickson, et al., “Using Experience to Guide Web Server Selec-
tion,” Multimedia Computing and Networking, Jan. 1999, pp. 1-12.
Narayanan, et al., “Using History to Improve Mobile Application
Adaptation,” Proceedings of the 3 IEEE Workshop on Mobile Com-
puting Systems and Applications, Dec. 2000, pp. 1-10.

Hartigan, John, “Clustering Algorithms,” 99" Edition, John Wiley &
Sons, Inc., 1975, pp. 351.

* cited by examiner



US 8,655,623 B2

Sheet 1 of 7

Feb. 18,2014

U.S. Patent

1 amS1]
m 10SS9901d salenD
m 0zt \ 8Lt
' |
‘ gtt
m sebueyn alelS
" S——
| 21 |
m oLl A ioelauen) 8jelg
! _
" [ /
‘ 801
Lk - SIUBAZ [BLLIOUGY
! - puy AYeULION JO S|ePON
m 0L \.
: wislsAg uonosie Aujpuiouqy
" _
m sielawRIRd
; \ 2oL 80UBLLIONS PBINSEB|
: 2ot
; welsAg Buiojuopy aouBWIOLSd
00t
sysig SJ9Jj0AU0D)
] B
\ vel SeLIMG SENER) get
ocL 7| 108uucoIB| uopeoyddy |
zet walsAg Arewtid EL




US 8,655,623 B2

Sheet 2 of 7

Feb. 18,2014

U.S. Patent

7 a3

soguey)) 91818 JO AJOISIH UQ puy
ASRQRIR( SIUOAY UOUIHO)) U UOHRULIONU] UQ

cﬂ\\l pesed UOLBIOLIA (0718 JO S9snR) ISIT-HOYS

A

80T

Ao1j0d Ag POUTIII(] SV UONIPUOD)
Suredfn] v JO oouaunoog) uodn ‘earoug
uaAlny vy Suung ‘seBuryn) Meig Ljnuop]

4

£0T

S[OPOTA] OPURTIIONIO]
[BULION UQ) Paseg SIUQAF [BULIOU]Y A11udp|

4

90¢

(yoroaddy Suusny)
v Susp) “5-0) S[OPOTN 0OURUIIOTIOJ [EUIION
arepdn Aeoiponad puy 21015 ‘dopaasq

S0T

v18(] SULIOIUOTA PIIOS[[0)) dI0IS

7 SJUDAT] UOWIWO)) J() 1INSAY
V SV paduey)) serouspuada(d puy SIUSAT

¥0¢

uounuo) 950y L, Ag porRy swusuodwo)
‘SITOAT UOTITIOD) UMOUY JO 18T
Buipn[ou] ‘asBqeIR( SUSAT UOLILLO]) 9PIAOI]

syuaouodmo))
wWSAS ATeWILL] JOIUOIN A[BIIPOLIad

/ 0T




US 8,655,623 B2

Sheet 3 of 7

Feb. 18,2014

U.S. Patent

¢ 23]

bog/puey

SO0 Kouare A
10" Koude

€0

qoe

10" :AouareA
70" Koude]

9z1g 15onbay

T 10€

10 :AouareA
+Q Kouare]




US 8,655,623 B2

Sheet 4 of 7

Feb. 18,2014

U.S. Patent

$ 231
mwmumm_ugwmwm@ MOHIOAN
Lo 99 ¥ jood AJU=HD W {004 AT
¥ o8 W 90 HKI=HD ¥ 1004 XU
£E ¥e ABND | £ PROPUOA Alu=iD T PEOHION,
a¥ ge W=D | | PROIOM, W=D | PEOMION
soueeny, | sisanbaisy \wsuodwon usuodwon wauodwon wauodwon
SOUBWLICLIZ4-PEOT
T T 00 0 ELT CoE 205 YELT Bb T CC 7 z ]
756 il 500 Lo BiZ [ 186 ZEBE L v be g [
CEL ) B oLy EDS 701 a0z TFIL ED0T BN T ¥ g 0
o - soueuen | | soueues ; aouBHEA azE SIUBLEA bacimyes | TOUENEA | N
BWIL | 8ZUS | roigieq usyET 840 Sd01 8zIS sanbsy | bagpuey | PESIPUBE | e meay |BUMRESY) I




U.S. Patent Feb. 18, 2014 Sheet 5 of 7 US 8,655,623 B2

Cluster
Threshold

L=
o
e
e
o
Q

Figure 5




US 8,655,623 B2

Sheet 6 of 7

Feb. 18,2014

U.S. Patent

/ 2m3ry

Zv-1V -~

cdeug «— ZiusAajg

zdeug A
M Ldeus «- AAlUSAT

g ang1
ZWUaAg A JUBAZ Y usag A IUBAT
© €0 L o )
pa; . eg fAs g
Y | 9Y gy PY  gv oY LY

Alusng

Xiuaag

7 usuodwon
g wsuodwon
v usuodwion



US 8,655,623 B2

Sheet 7 of 7

Feb. 18,2014

U.S. Patent

{ 2m31g
14 1l
SR
12 6l
A — H3Ldvay _ _
¥3aldvay
W1dsIa 30V 4H3LNI
&c H3asn gl
zZl
\
| 1] | Ll L |
0z — — _ _ —
gl al ¥l ol oL
¥3ldvay
SNOLLY JINAINWG D H3Ldvay oil WO Wy Ndo nda

ST
MHOMLIN

o~ =

L




US 8,655,623 B2

1
DIAGNOSTIC SYSTEM AND METHOD

STATE REGARDING FEDERALLY SPONSORED
RESEARCH OR DEVELOPEMENT

This invention was made with Government support under
Agreement Number H98230-05-3-0001 awarded by Intelli-
gence Agencies. The Government has certain rights in the
invention.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 11/674,197, filed on Feb. 13, 2007, and issued on Sep. 4,
2012 as U.S. Pat. No. 8,260,622, assigned to the IBM Cor-
poration, and the complete disclosure of which is fully incor-
porated herein by reference.

BACKGROUND

1. Field of the Invention

The embodiments of the invention generally relate to diag-
nostic systems and methods and, more particularly, to a diag-
nostic system and method for determining the root-cause of
detected abnormalities in application workflows.

2. Description of the Related Art

In large scale environments, a storage administrator sup-
ports the requirements of multiple applications such as data-
bases, web-servers, on-line customer transactions, decision
support and supply chain analysis, financial applications. The
end-to-end performance requirements of these applications
are specified as Service Level Objectives (SLOs) that pre-
scribe thresholds for maximum latency, minimum through-
put, minimum availability, etc. Specifically, the storage
administrator is required to continuously respond to run-time
system-induced and human-induced events (e.g., failures,
storage component overloads, changes in the input/output
(IO) access characteristics due to changes in the application
configuration, application or hardware additions, etc.) in
order to ensure that the SL.Os are being met. If one or more
SLOs for a given application are violated, the storage admin-
istrator typically decides what corrective actions should be
taken in response to the violation(s). To do this, the storage
administrator must review an event log for the application
invocation path components, determine the impact on the
application SLOs of the events contained in the event log,
develop a short-list of events that might have caused the SLO
violations, and finally, decide the corrective actions that
should be taken in response to these causal events.

SUMMARY

In view of the foregoing, the embodiments of the invention
disclosed herein provide an analysis framework that assists a
system administrator in determining the root-causes of a per-
formance objective violation, such as an end-to-end service
level objective (SLO) violation. This analysis framework uses
a hybrid white-box and black-box mapping of events to their
impact on system behavior. The black-box mapping is
recorded as a series of component-level snapshots of system
behavior annotated with events that happened during con-
secutive snapshots. The white-box mapping keeps track of
known event semantics for a subset of commonly occurring
events. The event semantics include, for example, the nature
of the event, the components affected by the event, and the
changes in the dynamic dependencies of the invocation path

10

20

40

45

50

55

2

components resulting from the event. In response to a query
about a specific SLO violation from a storage administrator
(e.g., why did the response time for application al increase
from r1 to r2), a processor within the analysis framework will
correlate the black-box and white-box mapping to determine
a short-list of probable causes for the SLO violation.

More specifically, disclosed are embodiments of a diag-
nostic system for determining probable causes (e.g., devel-
oping a short-list of causes) of a violation of a performance
objective (e.g., of a service level objective (SLO) violation)
for an application performed by a primary system (e.g., a
large-scale storage system). The diagnostic system can com-
prise a performance monitoring system, an abnormality
detection system, a state generator, a common events data-
base and a processor.

The performance monitoring system can comprise a plu-
rality of monitoring agents adapted to periodically sense the
measurable performance parameters of individual system
components within the different tiers (e.g., application serv-
ers, interconnect switches, controllers, disks, etc.) of the invo-
cation paths of the applications that are being performed by
the primary system (e.g., a large-scale storage system). This
monitoring system can further be adapted to store the mea-
sured performance parameters as collected data in a data
storage device, such as a monitoring system database.

The abnormality detection system can be in communica-
tion with the performance monitoring system. The abnormal-
ity detection system can be adapted to automatically develop
and periodically update normal performance models for the
primary system components based on the periodically col-
lected data (i.e., based on the measured performance data
from the performance monitoring system). These models can
be stored in a storage device, such as a database within the
abnormality detection system. The abnormality detection
system can further be adapted to automatically identity, based
on the normal performance models, any abnormal events
occurring in the invocation path during running of a given
application. A record of these abnormal events can also be
stored in a storage device, such as a database within the
abnormality detection system. Specifically, the abnormality
detection system can be adapted to develop these normal
performance models and to identify any abnormal events by
using a data clustering approach.

The state generator can be in communication with the
monitoring system and can be adapted to automatically iden-
tify, based on the periodically collected data from the perfor-
mance monitoring system, state changes exhibited during a
given time interval by the different primary system compo-
nents that are within the invocation path of a given applica-
tion. These state changes can, for example, comprise run-time
changes that, for a given component, will impact workload
access, cumulative load, response-time and throughput for a
given load characteristic, dependencies and/or workflow of
the application. However, while operation of the state genera-
tor can be automatic, it can further be policy-based rather than
continuous or periodic (i.e., occurring at regular intervals).
That is, rather than continuously or periodically determining
the state of system components, operation of the state gen-
erator can be triggered during the given time interval based
upon a predetermined policy. For example, the predetermined
policy can provide that state generator operation is to be
triggered by the identification of any abnormal event during
the running of the application, by the identification of at least
one specified type of abnormal event during the running of the
application, by the identification of a specified number of
abnormal events during the running of the application, by the
identification of a specified number of a specified type of



US 8,655,623 B2

3

abnormal events during the running of the application, etc.
Thus, the given time interval in which the state changes are
identified is the period between the point in time, before the
occurrence of the triggering condition, when the measured
performance parameter data was last collected and stored by
the performance monitoring system, and the point in time,
after the occurrence of the triggering condition, when the
measured performance parameter data is next collected. A
record of these state changes can be stored in a storage device,
such as a database within the state generator itself.

The common events database can comprise a stored list of
common events that may occur within the primary system.
This list can be based on industry and expert knowledge and
may further indicate all of the system components known to
be affected by the common events as well as an indication of
any changes in dynamic dependencies resulting from the
common events.

Finally, the processor can be in communication with the
state generator and, particularly, the storage device contain-
ing the record of the component state changes and also in
communication with the common events database. This pro-
cessor can further be adapted to receive and to automatically
respond to queries regarding a violation of a specific applica-
tion performance objective (i.e., regarding an SL.O violation).
Specifically, in response to a query, the processor can be
adapted to access both the state changes database and the
common events database and to correlate the common events
listed in the common events database with the state changes
recorded by the state generator in order to determine a set of
events that are probable causes for the violation of the per-
formance objective (i.e., to develop a short-list of causes of
the SLO violation mentioned in a query).

Additionally, embodiments of an associated method for
diagnosing probable causes (e.g., for developing a short-list
of causes) of a violation of a performance objective (e.g.,of a
service level objective (SLO) violation) for an application
being performed by a primary system (e.g., a large-scale
storage system) are disclosed.

The method can comprise providing, based on expert and
industry knowledge, a list of common events that may occur
within the primary system and storing the list in a common
events database. Providing the list can further comprise indi-
cating on the list all system components that are known to be
affected by the common events as well as indicating changes
in dynamic dependencies resulting from the common events.

The method can also comprise periodically monitoring a
plurality of the system components within the different tiers
(e.g., application servers, interconnect switches, controllers,
disks, etc.) of the I/O invocation paths of the applications
being performed by the primary system. This periodic moni-
toring can be accomplished, for example, using a perfor-
mance monitoring system comprising a plurality of corre-
sponding monitoring agents that are adapted to sense
measurable performance parameters The measured perfor-
mance parameters for each of the system components can be
stored as collected data in a storage device, such as a database
within the performance monitoring system.

Next, normal performance models for the system compo-
nents (i.e., for the components of the primary system that are
within the invocation path of a given application) can be
automatically developed by an abnormality detection system
and stored within a storage device, such as a database within
the abnormality detection system. These normal performance
models can be developed based on the periodically collected
data (i.e., the measured performance data) from the perfor-
mance monitoring system. Once the normal performance
models are developed, they can be used to automatically

10

20

25

30

35

40

45

50

55

60

65

4

identify abnormal events occurring in the invocation path of a
given application. The normal performance models can be
developed and the abnormal events can be identified using,
for example, a data clustering approach.

Then, any state changes exhibited, during a given time
interval, by any of the system components within the /O
invocation path of the application can be automatically iden-
tified using a state generator and stored in a storage device,
such as a database within the state generator. Identifying the
state changes can comprise identifying run-time changes that,
for a given component, will impact at least one of workload
access, cumulative load, response-time and throughput for a
given load characteristic, dependencies and workflow of the
application. This state changes identification process (i.e.,
operation of the state generator) can be initiated upon the
occurrence of a triggering condition, as opposed to being
performed continuously or periodically (i.e., at regular inter-
vals). For example, this process can be triggered by the iden-
tification of any abnormal event during the running of the
application, by the identification of at least one specified type
of abnormal event during the running of the application, by
the identification of a specified number of abnormal events
during the running of the application, by the identification of
a specified number of a specified type of abnormal events
during the running of the application, etc. Thus, the given
time interval in which the state changes are identified is the
period between the point in time, before the occurrence of the
triggering condition occurs, when the performance parameter
data was last collected and stored by the performance moni-
toring system, and the point in time, after the occurrence of
the triggering condition, when the performance parameter
data is next collected.

Once these state changes are identified, a set of events that
are probable causes for the violation of the performance
objective (i.e., a short-list of SL.O violation causes) can be
automatically determined, by using a processor to correlate
the common events listed in the common events database
(including the components that are known to be affected by
the common events as well as the changes in dynamic depen-
dencies that result from the common events) with the state
changes recorded in the state changes database.

Also disclosed is a program storage device readable by
computer and tangibly embodying a program of instructions
executable by that computer to perform the method of the
invention, described above.

These and other aspects of the embodiments of the inven-
tion will be better appreciated and understood when consid-
ered in conjunction with the following description and the
accompanying drawings. It should be understood, however,
that the following descriptions, while indicating preferred
embodiments of the invention and numerous specific details
thereof, are given by way of illustration and not of limitation.
Many changes and modifications may be made within the
scope of the embodiments of the invention without departing
from the spirit thereof, and the embodiments of the invention
include all such modifications.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of the invention will be better under-
stood from the following detailed description with reference
to the drawings, in which:

FIG. 1 is a schematic diagram illustrating an embodiment
of a system of the invention;

FIG. 2 is a flow diagram illustrating an embodiment of a
method of the invention;



US 8,655,623 B2

5

FIG. 3 is an illustration of an exemplary clustering diagram
used in conjunction with a data clustering approach for deter-
mining normality models and identifying abnormal events;

FIG. 41s a stored representation of workflow, dependencies
and the load-to performance mapping of the clusters of FIG.
3;

FIG. 5 is a diagram illustrating the moving average concept
of the data clustering approach illustrated in FIG. 3;

FIG. 6 is a table illustrating an exemplary state history
representation for different events;

FIG. 7 is diagram illustrating an exemplary snapshot rep-
resentation of the events of FIG. 6; and

FIG. 8 a schematic representation of a computer system
suitable for use in text processing as described herein.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The embodiments of the invention and the various features
and advantageous details thereof are explained more fully
with reference to the non-limiting embodiments that are illus-
trated in the accompanying drawings and detailed in the fol-
lowing description. It should be noted that the features illus-
trated in the drawings are not necessarily drawn to scale.
Descriptions of well-known components and processing
techniques are omitted so as to not unnecessarily obscure the
embodiments of the invention. The examples used herein are
intended merely to facilitate an understanding of ways in
which the embodiments of the invention may be practiced and
to further enable those of skill in the art to practice the
embodiments of the invention. Accordingly, the examples
should not be construed as limiting the scope of the embodi-
ments of the invention.

As mentioned above, in large scale environments, a storage
administrator supports the requirements of multiple applica-
tions such as databases, web-servers, on-line customer trans-
actions, decision support and supply chain analysis, financial
applications. The end-to-end performance requirements of
these applications are specified as Service Level Objectives
(SLOs) that prescribe thresholds for maximum latency, mini-
mum throughput, minimum availability, etc. Specifically, the
storage administrator is required to continuously respond to
run-time system-induced and human induced events (e.g.,
failures, storage component overloads, changes in the input/
output (I10) access characteristics due to changes in the appli-
cation configuration, application or hardware additions, etc.)
in order to ensure that the SL.Os are being met. If one or more
SLOs for a given application are violated, the storage admin-
istrator typically decides what corrective actions should be
taken in response to the violation(s). To do this, the storage
administrator must review an event log for the application
invocation path components, determine the impact on the
application SLOs of the events contained in the event log,
develop a short-list of events that might have caused the SLO
violations, and finally, decide the corrective actions that
should be taken in response to these causal events.

More specifically, the invocation path of an application
typically consists of one or more application servers (A),
interconnect switches (S), virtualization controllers (C) such
as SVC, and disks (D). The workflow of an application (e.g.,
a database, an e-mail system, a web-server, etc.) is repre-
sented as an ordered set W, . .={AS,C.D} such that A,S,
C,D are sets with a cardinality >=1, representing the physical
devices being used in that tier. For example, A={a;,c5,0.,}
represents servers d,,d.s,0., are used at the application server
tier. Additionally, while the workflow represents the physical
components used by the application, the abstraction of work-

10

15

20

25

30

35

40

45

50

55

60

65

6

load stream is used to capture the run-time 1O activity of the
application and it consists of the access characteristics as well
as the percentage of the requests being served by the physical
components in each of the tiers. This is referred to as depen-
dency e.g., 70% of the e-mail IO requests are directed through
switch s, and 30% through s,. Run-time changes that occur
in the system can be broadly classified as being either well-
known events or unknown events (i.e., referred to as a ghost
events). Irrespective of the category of change, the impact of
such run-time change events can be represented as one of the
following: (1) a change in the workload access, (2) a change
in the cumulative load on a physical component, (3) a change
in the component response-time and throughput for a given
load characteristic, (4) a change in the dependencies, and (5)
a change in the workflow.

In each tier of an invocation path of a given application
there are often hundreds of log events and configuration
changes that need to be parsed and analyzed, thus, storage
administrates are finding it more and more difficult to deter-
mine the root cause of an SLO violation. That is, in order to
the root cause of an SLO violation of a given application,
storage administrators using existing commercial storage
system management software will deploy extensive monitor-
ing agents on each tier of the application’s 1O invocation path
(e.g., on the application servers, network switches, storage
controllers, disks, etc.). These monitoring agents periodically
collect run-time information and add to a monitoring data-
base. That is, they collect and store information from the
available monitors regarding hundreds of events recorded on
each of the different tiers, as well as collect and store infor-
mation regarding the physical interconnection between the
hardware components. This information allows the setting of
trigger threshold values for measurable parameters. Thus, the
existing storage system management software provides a
“magnifying glass” view of the state of the storage system.
However, such existing systems do not provide the “intelli-
gence” that is needed by storage administrators to make a
timely causal determination. Specifically, the number of
events recorded by the monitoring agents on each tier can be
significant and manually analyzing each of these events to
understand the cause of such events can be nontrivial. Addi-
tionally, the impact of these events must be mapped to the
workload SL.Os and it is often difficult, if not impossible, for
the storage administrator to correlate the different events on
the different tiers with the violation of a specific SLO in order
to pin-point the root-cause of the SLO violation.

In view of the foregoing, the embodiments of the invention
disclosed herein provide an analysis framework that assists a
system administrator in determining the root-causes of a per-
formance objective violation, such as an end-to-end service
level objective (SLO) violation. This analysis framework uses
a hybrid white-box and black-box mapping of events to their
impact on system behavior. The black-box mapping is
recorded as a series of component-level snapshots of system
behavior annotated with events that happened during con-
secutive snapshots. The white-box mapping keeps track of
known event semantics for a subset of commonly occurring
events. The event semantics include, for example, the nature
of the event, the components affected by the event, and the
changes in the dynamic dependencies of the invocation path
components resulting from the event. In response to a query
about a specific SLO violation from a storage administrator
(e.g., why did the response time for application al increase
from r1 to r2), a processor within the analysis framework will
correlate the black-box and white-box mapping to determine
a short-list of probable causes for the SLO violation.



US 8,655,623 B2

7

More specifically, referring to FIG. 1, disclosed are
embodiments of a diagnostic system 100 for determining
probable root-causes (e.g., developing a short-list of root-
causes) of a violation of a performance objective (e.g., of a
service level objective (SLO) violation) for an application
performed by a primary system 130 (e.g., a large-scale stor-
age system). The diagnostic system 100 can comprise a per-
formance monitoring system 102, an abnormality detection
system 104, a state generator 108, a common events database
114 and a processor 116.

The performance monitoring system 102 can comprise a
plurality of monitoring agents adapted to periodically sense
the measurable performance parameters of individual system
components within the different tiers (e.g., application serv-
ers 131, interconnect switches 132, controllers 133, such as
virtualization controllers, disks 134, etc.) of the invocation
paths of the applications that are being performed by the
primary system 130 (e.g., by a large-scale storage system).
This monitoring system 102 can further be adapted to store
the measured performance parameters as collected data in a
storage device, e.g., in a monitoring system database 103.

The abnormality detection system 104 can be in commu-
nication with the performance monitoring system 102. The
abnormality detection system 104 can be adapted to auto-
matically develop and periodically update normal perfor-
mance models for the primary system components 131-134
based on the periodically collected data in the storage device
103 (i.e., based on the measured performance data from the
performance monitoring system 102). These models can be
stored in a storage device 106, such as a database within the
abnormality detection system 104. The abnormality detection
system 104 can further be adapted to automatically identify,
based on the normal performance models, any abnormal
events occurring in the invocation path during running of a
given application. Such abnormal events can comprise run-
time system-induced events as well as human-induced events,
including failures, storage component overloads, changes in
the input/output (I0) access characteristics due to changes in
the application configuration, application or hardware addi-
tions, etc. A record of these abnormal events can also be
stored in the storage device 106 within the abnormality detec-
tion system 104. Specifically, the abnormality detection sys-
tem 104 can be adapted to develop these normal performance
models and to identify any abnormal events by using a data
clustering approach or any other approach capable of devel-
oping normality models and identifying abnormal events
based on those models.

The state generator 108 can be in communication with the
performance monitoring system 102 and can be adapted to
automatically identify, based on the periodically collected
data in storage device 103 from the performance monitoring
system 102, state changes exhibited during a given time inter-
val by the different primary system components 131-134 that
are within the invocation path of a given application. These
state changes can, for example, comprise run-time changes
that, for a given component, will impact workload access,
cumulative load, response-time and throughput for a given
load characteristic, dependencies and/or worktflow of the
application. However, while operation of the state generator
can be automatic, it can be policy-based 110 rather than
continuous or periodic (i.e., occurring at regular intervals).
That is, rather than continuously or periodically determining
the state of system components, operation of the state gen-
erator 108 is triggered during the given time interval based
upon a predetermined policy 110. For example, the predeter-
mined policy 110 can provide that state generator operation is
to be triggered by the identification of any abnormal event

5

10

15

20

25

30

35

40

45

55

60

65

8

during the running of the application, by the identification of
at least one specified type of abnormal event during the run-
ning of the application, by the identification of a specified
number of abnormal events during the running of the appli-
cation, by the identification of a specified number of a speci-
fied type of abnormal events during the running of the appli-
cation, etc. Thus, the given time interval in which the state
changes are identified is the period between the point in time,
before the occurrence of the triggering condition, when the
measured performance parameter data was last collected and
stored by the performance monitoring system 102, and the
point in time, after the occurrence of the triggering condition,
when the measured performance parameter data is next col-
lected. A record ofthese state changes can be stored in storage
device 112, such as a database within the state generator 108
itself.

The common events database 114 can comprise a stored
list of common events (i.e., commonly occurring run-time
system-induced events and/or human-induced events, includ-
ing failures, storage component overloads, changes in the
input/output (I0) access characteristics due to changes in the
application configuration, application or hardware additions,
etc.) that may occur within the primary system 130. This list
can be based on industry and expert knowledge and may
further indicate all of the system components 131-134 known
to be affected by the common events as well as an indication
of any changes in dynamic dependencies resulting from the
common events.

Finally, the processor 116 can be in communication with
the state generator 108 and, particularly, the storage device
112 containing the record of the component state changes and
also in communication with the common events database
114. This processor 116 can further be adapted to receive and
to automatically respond to queries 118 regarding a violation
of a specific application performance objective (i.e., regard-
ing an SLO violation). Specifically, in response to a query
118, the processor 116 can be adapted to access both the state
changes database 112 and the common events database and to
correlate the common events listed in the common events
database (including the components that are known to be
affected by the common events as well as the changes in
dynamic dependencies that result from the common events)
with the history of state changes recorded by the state gen-
erator 108 in order to determine a set of events that are
probable causes for the violation of the performance objective
(i.e., to develop and output 120 a short-list of causes of the
SLO violation mentioned in a query).

Additionally, referring to FIG. 2 in combination with FIG.
1, embodiments of an associated method for diagnosing prob-
able causes (e.g., for developing a short-list of causes) of a
violation of a performance objective (e.g., of a service level
objective (SLO) violation) for an application being per-
formed by a primary system (e.g., a large-scale storage sys-
tem) are disclosed.

The method can comprise providing, based on expert and
industry knowledge, a list of common events that may occur
within the primary system and storing the list in a common
events database 114 (202). Providing the list can further com-
prise indicating on the list all system components that are
known to be affected by the common events as well as indi-
cating changes in dynamic dependencies resulting from the
common events.

The method can also comprise periodically monitoring a
plurality of the system components 131-134 within the dif-
ferent tiers (e.g., application servers, interconnect switches,
controllers, disks, etc.) of the /O invocation paths of the
applications being performed by the primary system 130



US 8,655,623 B2

9

(204). This periodic monitoring can be accomplished, for
example, using a performance monitoring system comprising
a plurality of corresponding monitoring agents that are
adapted to sense measurable performance parameters. The
measured performance parameters for each of the system
components can be stored as collected data in a data storage
device 103, such as a database within a performance moni-
toring system 102 (205).

Next, normal performance models for the system compo-
nents (i.e., for the components 131-134 of the primary system
130 that are within the invocation path of a given application)
can be automatically developed by an abnormality detection
system 104 and stored within a data storage device 106, such
as a database within the abnormality detection system 104
(206). These normal performance models can be developed
based on the periodically collected data (i.e., the measured
performance data in storage device 103) from the perfor-
mance monitoring system 102. Once the normal performance
models are developed at process 206, they can be used to
automatically identify abnormal events occurring in the invo-
cation path of a given application (207). An abnormal event
being an event that occurs during operation of the application
and which is out side normal operating parameters as estab-
lished and defined by the normal performance models. A
record of the abnormal events can similarly be stored a stor-
age device 106, such as a database within the abnormality
detection system 104. The normal performance models can
be developed and the abnormal events can be identified using,
for example, a data clustering approach or any other suitable
approach.

Then, any state changes exhibited, during a given time
interval, by any of the system components 131-134 within the
1/0 invocation path of the application can be automatically
identified using a state generator 108 and stored in a data
storage device 112, such as a database within the state gen-
erator 108 (208). Identifying the state changes can comprise
identifying run-time changes that, for a given component,
will impact at least one of workload access, cumulative load,
response-time and throughput for a given load characteristic,
dependencies and workflow of the application. This state
changes identification process (i.e., operation of the state
generator) can be initiated upon the occurrence of a triggering
condition, as opposed to being performed continuously or
periodically (i.e., at regular intervals). For example, this pro-
cess can be triggered by the identification of any abnormal
event during the running of the application, by the identifica-
tion of at least one specified type of abnormal event during the
running of the application, by the identification of a specified
number of abnormal events during the running of the appli-
cation, by the identification of a specified number of a speci-
fied type of abnormal events during the running of the appli-
cation, etc. Thus, the given time interval in which the state
changes are identified is the period between the point in time,
before the occurrence of the triggering condition occurs,
when the performance parameter data was last collected and
stored by the performance monitoring system, and the point
in time, after the occurrence of'the triggering condition, when
the performance parameter data is next collected.

Once these state changes are identified at process 208, a set
of events that are probable causes for the violation of the
performance objective (i.e., a short-list of SLO violation
causes) can be automatically determined, by using a proces-
sor to correlate the common events listed in the common
events database (including the components that are known to
be affected by the common events as well as the changes in

10

15

20

25

30

35

40

45

50

55

60

65

10

dynamic dependencies that result from the common events)
with the history of state changes recorded in the state changes
database (210).

More particularly, the system and method of the present
invention is designed to assist storage administrators in short-
listing the root-cause of a service level objective (SLO) vio-
lation in an end-to-end fashion. The focus is primarily on
root-causes for performance violations with an emphasis on
having self-evolving component-level normality models. The
disclosed mechanisms are scalable with regard to the number
of system components and are compact enough to preserve
and parse a significant amount of system history. This
approach of using component-level normality models can
complement prior art methods of diagnosing the root-cause of
an SLO violation by providing the next level of drill-down
required to further understand the run-time changes respon-
sible for the violation.

Referring again to FIG. 1, the system 100 of the present
invention runs on one or more management nodes. The abnor-
mality detection module 104 extracts load and performance
data from the monitoring database 103, compares it to a
cluster-based model of normality for load and performance to
classify it as normal/abnormal and updates the model 106
with the new information to evolve the notion of normality. If
the data is classified as abnormal the snapshot generator (i.e.,
the state generator 108) is triggered. Policy-based triggers
(see policy 110) for run-time events as well as threshold
violations (SLOs) complement triggers from the clustering-
based abnormality detection. That is, while trigger policies
110 can be defined for well-known events such as failures,
migration of data, cache reallocation, etc., the clustering-
based approach treats the system as a black-box, and detects
both known as well as ghost events with varying degrees of
confidence. By triggering snapshots based on system events
such as performance abnormalities and failures we are able to
build a history of state changes that focuses on the interesting
times for the system 100.

The state changes history 112 consists of a series of snap-
shots recorded over a period of time, at a later stage, when the
administrator wants to understand the root-cause of a perfor-
mance abnormality, his queries 118 to the system 100 and,
specifically, to the processor 116 are typically of the form:

Select * from changes such that application=a,, perf
violation= latency AND start time=t; AND end time=t,.

Inresponse to these queries 118, the diagnosis module (i.e.,
processor 116) analyzes the state-history 112 for the series of
snapshots between t; and t,; uses the invocation path of appli-
cation o, to filter unrelated run-time changes; ranks the list of
relevant changes for the administrator, using the load depen-
dency for a, and connected components, as well as whether
the change is well-known (i.e., has a policy defined).

More particularly, the purpose of the diagnostic system 100
and method of the present invention is to diagnose the root-
causes of end-to-end performance objective violations. To
that end, the abnormality detection system 104 is adapted to
detect the causes and effects of potential problems in the
system 130. The possible effects must be detected in order to
determine that a problem has occurred. Additionally, the pos-
sible causes must be tracked, for example, by the state gen-
erator 108, so that once a problem is detected a determination
can be made as to what may have caused the problem. Causes
and effects can be determined by the processor 116 by con-
sidering abnormal events in light of changes in the system



US 8,655,623 B2

11

state, such as changes in the workflow or performance of the
system, as determined by the snapshot generator 108, as well
as by considering known causes and effects, as stored in the
common events database 114.

The Abnormality Detection System 104

The abnormality detection module 104 extracts informa-
tion from the database 103 of the performance monitoring
system 102. This monitoring system database 103 contains
collected measured performance data from the components
131-134 of the system 10 and is updated periodically (e.g.,
every five minutes, every ten minutes, etc.) by monitoring
system agents. The abnormality detection module 104 is
adapted to structures the plethora of monitored data from the
database 103 into normality models (i.e., normal perfor-
mance models) and to store those models in a storage device
106. The abnormality detection module 104 is further adapted
to determine in light of those models when an abnormal event
occurs within the components 131-134 of the system 130.
Such abnormal events can comprise run-time system-induced
events as well as human-induced events, including failures,
storage component overloads, changes in the input/output
(IO) access characteristics due to changes in the application
configuration, application or hardware additions, etc. The
abnormality detection system 104 can be adapted to develop
these normal performance models and to identify any abnor-
mal events by using a data clustering approach or any other
approach capable of developing normality models and iden-
tifying abnormal events based on those models.

For example, U.S. patent application Ser. No. 11/348,010,
of Duyanovich, et al., filed on Feb. 6, 2006, entitled “SYS-
TEM AND METHOD FOR RECORDING BEHAVIOR
HISTORY FOR ABNORMALITY DETECTION,” and
incorporated herein by reference, discloses an exemplary
abnormality detection system 104 using a data clustering
approach that may be incorporated into the present invention.
Specifically, as incorporated into the present invention, such
anabnormality detection system 104 can be adapted to extract
raw load and performance measure data from the monitoring
system database 103 and to evolve and store (e.g., in database
106) normality models for load and performance by using a
clustering approach. That is, under normal conditions the
performance of a given system component (e.g., 131-134)
should be similar under similar loads. The load is considered
to be an input and the performance to be an output of the given
system component that is monitored. In order to determine if
a monitored system component (e.g., 131-134) is performing
normally, the load (input) data is used by the abnormality
detection system 104 to find what the normal performance
(output) should be based on history and then compared to the
current performance (i.e., the current output). This can be
represented as N(LL)=P, where N is the model of normality for
performance, L is the load measurement, and P is the normal
performance for the load L. As implemented in the present
invention L=<rw, rs, sz, iops>where rw is the read/write ratio,
rs is the randony/sequential ratio, sz is the average request
size, and iops is the IOs per second. P=<lat>where lat is the
average latency of requests.

Additionally, the abnormality detection module 104 is
adapted to maintain a history of the dependencies of each
workload, as well as changes to the workflow. Any changes to
the workflow are considered abnormalities. The dependen-
cies are represented as historical mean and variance can be
calculated by using either a moving average over some win-
dow of time, or to be more space efficient, by using a decay
factor to give less weight to older data. In our implementation
we use the decay factor O<a<1 and calculate the mean and
variance for x,, as described in “Using experience to guide

10

15

20

25

30

35

40

45

50

55

60

12

web server selection” by Gullickson et al., published in Mul-
timedia Computing and Networking in January 1999:

p=ox,+(1-0)p,

O, t, P +H(1-)0,_

Thus, an abnormality event is generated whenever the
dependency values change by a certain number of standard
deviations (e.g., based on the accepted false-positive rate)
from the historical mean. By using a moving average the
abnormality models can automatically adapt to changes in the
system 130 over time. For instance, if a workload changes its
working set of files to a new storage pool, the dependencies in
the system 130 between these components will change. At
first this can be correctly considered abnormal since the load
has shifted. However, if a detected abnormality is not consid-
ered a problem that needs to be fixed (e.g., no actions are
taken to resolve the abnormality), the abnormality detection
system 104 will automatically evolve the models such that the
new dependencies are considered.

To represent performance in terms of load N(L)=P, the
abnormality detection system 104 can be adapted to use
regression or analytical models to define an expression. How-
ever, these methods are brittle since the N(L)=P model they
generate is static, and would need to be redefined every time
the system 130 changed. Thus, alternatively, the abnormality
detection system 104 can be adapted to use the performance
history of the system 130 collected in database 103 to con-
struct a mapping in order to track load to performance and to
update the normality models incrementally. That is, the nor-
mal performance of the system components can be deter-
mined for a new measurement by finding a similar load to the
new load and looking up the historical performance recorded.
To build this mapping it would not be practical to store every
entry, or even a percentage of entries (e.g., as illustrated in
“Simple table-based modeling of storage devices” by Ander-
son and published in Technical Report HPL-SSP-2001-4, HP
Laboratories in July 2001), since the resulting mapping
would not be scalable over time in terms of storage space and
search space for finding similar loads in the mapping. Thus,
the abnormality detection system 104 incorporates an effi-
cient structure that scales in 0(1) rather than 0(t), where t is
time, in terms of space and search complexity. The load space
could be partitioned statically and stored as an average per-
formance for each partition; however, forming such partitions
presents interesting issues. For example, if the load space is
partitioned without knowing what range of loads will be
encountered, all of the entries may wind up in one partition, or
spread unsatisfactorily among some number of partitions.

Consequently, the abnormality detection system 104 of the
present invention can be adapted to form partitions using a
clustering technique to allow natural partitions to be formed
around the data, e.g., as illustrated in FIG. 3. Specifically,
since N(L)=P consists of clusters 301-303, each representing
a group of similar loads L. encountered in the past mapped to
a performance P, which is considered to be the normal per-
formance measurement for any load L that falls into that
cluster. Clusters 301-303 are identified by their centroid (i.e.,
apoint that is the average value of each element in the load LL
for the points 305 in the cluster). The abnormality detection
system 104 is adapted to track the variance for each element
of the load, as well as the number of points n 305 in each
cluster 301-303.

The performance measurement for a cluster (e.g., 301-303)
is represented by the mean and variance for each performance
attribute measured. This representation of clusters 301-303
X~—=L, L, ,P,P, .n shown graphically in FIG. 3,

variance’ variance’



US 8,655,623 B2

13

greatly simplifies the amount of data collected to form the
model over time and provides a structure that is meaningful
and easy to access when a mapping needs to be looked up.
FIG. 4 provides an exemplary illustration of how the infor-
mation can be stored in the models and abnormal events
database 106 for each of our models shown in FIG. 3.

In order to efficiently build and maintain clusters of our
load measurements the abnormality detection system 104 can
be adapted to use a sequential leader clustering technique
(e.g., as outlined by Hartigan in “Clustering Algorithms”,
published by John Wiley & Sons, Inc. in 1975). Specifically,
sequential leader clustering is an incremental approach that
allows data to be added one point at a time. Thus, when a new
measurement is received (e.g., L, :P, ) the abnormality
detection system 104 is adapted to automatically search the
current clusters for the cluster whose centroid is closest to
L, It then automatically measures distances in the cluster
space by the weighted Euclidean distance measure.

D= | iw;(L; Loy

Once the abnormality detection system 104 finds a cluster
X, with the minimum distance D,,,,,, to the current load L.,
it checks to see if the distance D,,,,, is less than a predeter-
mined cluster threshold value C. If D,,,,>C, the abnormality
detection system 104 automatically forms a new cluster X,_,,
where L, is the centroid and P, is the performance. The
system 104 can be programmed to either assume the perfor-
mance is normal to begin with or can be programmed to look
for surrounding data and project or triangulate to estimate an
expected range for the performance to test for abnormality
(e.g., as illustrated in “Using information from prior runs to
improve automated tuning systems” by Chung et al., pub-
lished in Proceedings of SC’04 in November 2004). Thus, if
D,,;,,<=C, then the system 104 can compare P, to P, the
performance recorded in the history as normal for loads simi-
larto L,,,,. Then, the number of standard deviations from the
new performance measurement can be caluculated from the
current normal and if it is above a predetermined abnormality
threshold, L,,..,., P,,.., can be considered an abnormal event.

The predetermined abnormality threshold can, for
example, be based on some distribution (e.g., a Gaussian
distribution) to specify the accepted false positive rate for
abnormality detection. Regardless of whether L,,.,..P,,.., is
found to be abnormal, the abnormality detection system 104
automatically adds this point to the cluster X and recalculates
the centroid L, and its corresponding performance P, as well
as variance, with L, . P, included:

new? © n

Ljn:aL,,EW+(1—0L)Lj

n-1

— 2
mariance M Lnew= Ly JHA=OL; i,

Pjn:aP,,EW+(1—a)Pj

n—lvariance
imariance U nen™

Thus, the centroid is a moving average (using the decay
factor method) as in the dependency model in order to give
less weight to older values. By calculating performance as a
moving average regardless of whether an abnormality is
found, the abnormality detection system 104 allows the mod-
els of normality to automatically adapt to changes in the
system 130 without having to be reset. For instance, if some
action is taken on a component that improves its performance,

2
Py )y +(1-a)P;

Jn-lvariance

20

25

30

35

40

45

50

55

14

the mapping by the abnormality detection system 104 will
automatically adapt to the change in a reasonable amount of
time so that the normal performance is better than it was
previously.

By recalculating the centroids of clusters and forming new
ones, the abnormality detection system 104 allows clusters to
form and move towards the denser parts of the load space in
order to form more meaningful clusters. In denser areas ofthe
load space, clusters may overlap in coverage (L,+C) as they
move towards more recent measurements, but since the
abnormality detection system 104 is adapted to always find
the closest cluster when adding a new point, the clusters are in
effect smaller in these areas. This allows for finer grain clus-
tering in popular regions, e.g., as illustrated in FIG. 5.

The representation of historical load as clusters by the
abnormality detection system 104 is useful for modeling nor-
mal load as well as performance. Load is considered abnor-
mal if a new cluster is formed when updating the clusters or if
the cluster updated is significantly far from the previously
updated cluster. Load is considered to be significantly differ-
ent if the distance between the two clusters is greater than
twice the cluster threshold (i.e., the clusters do not overlap).

While load and performance are the only parameters that
are incorporated into the normality models, as discussed
above, those skilled in the art will recognize that additional
parameters, e.g., time-of-day and burstiness, may similarly be
incorporated into the normality models.

The abnormality detection system 104 of the present inven-
tion may further be adapted to maintain in storage 106 only a
lightweight representation of the clusters by storing only the
centriod, along with the number of points and their distribu-
tion. Specifically, keeping in mind that scalability is a key
concern of storage administrators, cluster representation can
be bounded in size and complexity. This can be accomplished
by limiting the number of clusters maintained in storage 106
(e.g., to a predetermined number of clusters k). Thus, to add
the k+1 cluster, two existing clusters will be merged (e.g., as
illustrated in “High-performance robust speech recognition
using stereo data” by Deng et al., published in Proc. Ofthe Int.
Conf. on Acoustics, Speech, and Signal Processing in May
2001). Currently, to merge clusters, the two clusters that have
the shortest centroid-to-centroid distances are selected. Since
not all of the points in the cluster are stored for space effi-
ciency, the clusters must be merged based on the centroid,
which is the mean of all of the points, and the variance.
Merging can therefore be done as merging two Gaussians
(n;02) that represent the clusters of size nl and n2 using the
following formula:

(g +nop2)

# d =
merge 1

m (o + (e — @ = )) . m(03 + (2 — )z — )
ny+n nL+m

o

merged =

The new cluster is represented as (pme,ged;ozmrged) with
size n1+n2. The performance associated with each cluster is
also merged using the same method to find the performance
for the new cluster. It should be noted that tracking covariance
for the clusters may also useful. For example, if k is large it
may be sufficient to simply eliminate a cluster based on time
or time and size in order to eliminate possible outliers.

At initialization of the abnormality detection system 104,
all of its history databases will be empty and then the
observed behavior of the system 130 at that time will be
considered “normal”. As the system 130 evolves and its per-



US 8,655,623 B2

15

formance changes for a given workload, abnormalities will be
detected and made available to the system administrator; it is
the system administrator’s responsibility to decide whether
an abnormality is considered a problem or not. The system
administrator can then take corrective actions to tune system
performance to desired levels if there is a problem, and the
history will eventually be pulled towards the new perfor-
mance values and consider the corrected state to be normal.

The cluster model used by the abnormality detection sys-
tem 104 requires several predetermined thresholds to be set:
cluster threshold C, abnormality threshold A, weights for load
L elements, the number of clusters to track k, and the decay
factor a.. A can be set based on the accepted false-positive
rate. The weights for load L. elements can be set using the
coefficients from a linear regression on a quick bootstrapping
session for each component that exercises a range of loads
(e.g., as illustrated in “Using history o improve mobile appli-
cation adaptation” by Narayanan et al., published in Proceed-
ings of the 3™ IEEE Workshop on Mobile Computing Sys-
tems” in December 2000. The decay o can be set based on the
rate of adaptation desired. The number of clusters k can be set
based on the number of points that the system can afford to
maintain and, finally, the cluster threshold C can be set based
on k to cover the range of expected variance of load based on
min/max request size, and IOPS. These thresholds do not
prevent the abnormality detection system 104 from updating
the models normality, rather they affect the overall accuracy
in terms of the false-positive rate and the rate at which a model
evolves. However, all of these thresholds can be refined auto-
matically over time to improve the accuracy based on simple
measurements. The cluster threshold can be adjusted based
on the intra-cluster variance of the load and/or performance.
The weights can be adjusted based on the range of values seen
for each element in L. and the covariance with P. The decay
factor can be adjusted based on the rate of change/noise in the
system. The abnormality threshold can be adjusted based on
the actual false-positive rate encountered.

The Snapshot Generator 108

The snapshot generator 108 (i.e., the state generator 108) is
adapted to maintain the state history. For the diagnostic sys-
tem 100 of the present invention to be effective in large-scale
systems 130 (e.g., large-scale enterprise storage systems), the
state generator 108 is scalable in terms of size and complexity.
Additionally, it is intelligent in that it is adapted to stores in
storage 112 only those state changes that are necessary for
diagnosis of potential problems later on. For example, the
number of snapshots (i.e., records of state changes) recorded
between time intervals t;, and t, should: (1) be sufficient to
address administrator queries on the run-time changes that
happened during the time interval and their impact on system
behavior; (2) be minimal in contrast to systems that take
snapshots periodically or for every possible event that occurs
in a system; and (3) consist of one or more of the following
attributes: workflow, workflow dependency levels and the
state of all system components (e.g., load and performance
for all system components)

As mentioned above, the number of state snapshots stored
by the state generator 108 should be minimal in contrast to
systems that take snapshots periodically or for every possible
event that occurs in a system. To accomplish this, the record-
ing of snapshots is triggered by a combination of abnormal
events detected by the abnormality detection module 104 and
by policies 110. While abnormality detection is representa-
tive of the black-box approach for capturing variations using
statistical correlations, these policies represent the white-box
encoding of details for well-known events and existing best-
practices used for threshold values of measurable parameters.

10

15

20

25

30

35

40

45

50

55

60

65

16

Thus, when an abnormality is detected by the abnormality
detection system 104, the snapshot generator 108 (i.e., state
generator) is notified and is adapted to check its policies 110
to see if a snapshot should be taken (i.e., to determine if the
state of the system components should be determined and
recorded in storage 112).

The triggering policies 110 may, for example, be based on
any abnormality being detected, on the type of abnormality
(e.g., latency, load change, etc.), on the number of abnormali-
ties detected or on specified combinations of the type and
numbers of abnormalities detected. Since the monitored data
103 is periodically reported, the state generator 108 can only
determine the state over the period of time during which an
abnormality occurred rather than at the exact time it occurred.
Therefore, in order to summarize the state over the given time
interval when the abnormal even occurred, the stage genera-
tor 108 is adapted to determine the state of the components at
the beginning and at the end of the monitored period. Addi-
tionally, monitoring agents may not be synchronized (i.e., the
may report monitored data from the different components at
different times). Thus, for each component, the period of time
for which the triggering abnormality event occurred will start
and end at different times, as illustrated in FIG. 6.

Consequently, correlating and gathering a comprehensive
state snapshot across all the components for an abnormality
present a challenge. In order to record the state for each
component before and after an abnormality has occurred, the
state generator 108 is adapted to always store in storage 112
the current state until the next set of monitored data arrives. If
there’s an abnormality detected during the current monitoring
period, a flag is set that specifies for all components to retain
their current state, as well as storing in storage 112 the next
new state that will come from the monitor, and associate this
information with the triggering abnormality. If there was no
abnormality in the system components between the current
state and the new state the stage generator is adapted to
overwrite the current state with the new state.

Additionally, in order to improve the scalability of the data
structures for maintaining state history in storage 112, the
state generator is adapted to store all monitored data only
once, even if it is reference in to multiple snapshots. Storage
112 of state changes can, for example, be implemented as
illustrate din FIG. 7. That is, each abnormality can be asso-
ciated with a time, a snapshot and a duration (i.e., amount of
time in which it may cause another abnormality). Events that
occur close in time may reference the same snapshot, such as
Event X and EventY in FIG. 7. This snapshot contains point-
ers to a list of states for each component that represent the
system state before and after the abnormality. These states are
unique, and may be referenced by multiple snapshots if the
values remain the same across snapshots, or if abnormalities
occur during the same or adjacent monitoring intervals for a
component. For example, a component may sit idle for sev-
eral days, so all the snapshots taken during those days would
point to the same state for that component. Alternatively, in
the adjacent case, an abnormality may occur in two consecu-
tive monitoring periods for a component, so the “after” sub-
elements for the first snapshot will be the same as the “before”
sub-elements of the next. For example, see state C2, in which
both Event W and Event X reference it since they occur in
adjacent monitoring periods for component C.

To reduce the size of the state history storage 112 over time,
state generator 108 can be programmed to expired snapshots
once the duration of all the events referencing it have passed.
When a snapshot expires, the state generator can be pro-
grammed to delete it or, alternatively, to archive it by copying



US 8,655,623 B2

17

the data associated with it and versioning it against previous
snapshots using more advanced compression.

The Processor 116

The processor 116 is adapted to perform a root-cause
analysis, for example, for a performance objective violation
(e.g., a service level objective (SLO) violation) based on
information contained in the state changes database 112 of
the state generator 108 and on commonly known data 114.
Specifically, the processor 116 is adapted to receive queries
118 (e.g., from a storage administrator) about the perfor-
mance of an application, a system component, a subset of the
workflow, etc. An exemplary query 118 may ask, “why did the
response time for application ., increase from r, to r,?”” The
diagnostic system 100 and, specifically, the processor 116
will output 120 a short-list of causes (e.g., of run-time
changes that have occurred at one of more tiers of the work-
flow). This short-list may be sorted based on their predicted
impact on the end-to-end system performance.

However, the relationship between cause and effect is not
always straightforward. That is, a cause may have many
effects and an effect may be the product of multiple causes.
Further, the effect(s) of a cause may not be detectable until
long after the cause has occurred. For example, the amount of
time before the performance effects of reconfiguring a cache
are detected may be significantly large depending on the level
of'load on the system. Thus, the processor is adapted to use a
hybrid of component-level abnormal events data (e.g.,
acquired using a clustering approach) and of policy rules (i.e.,
known causes for common events). While normality models
help in mapping the impact of changes (in one or more tiers of
a system 130) to the end-to-end performance, the white-box
rules define details of a subset of commonly occurring well-
known storage events such as failures, data migration, RAID
re-build.

Therefore, the processor 116 can be adapted to execute the
following sequence of steps. First, the processor 116 can be
adapted to determine the attributes of the query. For example,
a storage administrator query will typically define the appli-
cation/component name, the time interval, performance
attribute. It may also define a specific component or a subset
of the workflow. Next, the processor 116 can be adapted to
reduce search space. That is, the processor 116 can be adapted
to analyze state information contained in storage 112 with
regard to the clustering-based normality models for all the
tiers. Specifically, the processor 116 can further be adapted to
use the state history database 112 to analyze, for all the
components in the application’s workflow, abnormalities that
occurred in the time interval specified by the query. This state
history 112 provides a temporal list of events (well-known as
well as ghost events) and their duration, associated with the
snapshot transitions. This analysis allows the processor to
determine the possible causes of the violation identified in the
query. The processor 116 can also be adapted to rank these
possible causes. For example, the process 116 can rank the
possible causes using dependency values (black-box) and
policy information about cause-effect relationships (white
box).

For example, in operation, the processor 116 can execute
the following method steps. The processor 116 can receive a
query, for example, in the format:

Select * from changes such that application=a, perf
violation= latency AND start time=t; AND end time=t,.

10

15

20

25

30

35

40

45

50

55

60

65

18

Next, the processor 116 can limit the search space for
diagnosing a performance problem to the components reach-
able from the queried component according to the workflow
atthe time of the problem. The space is then reduced to the set
of abnormalities (possible causes) whose effects may still be
detectable during the period in which the problem was seen.
This is done based on what we call elastic effects for a cause.
Since the effects of causes will appear at varying times
depending on the cause, each abnormality event in the state
history is associated with a duration based on the type of
event. This allows for a quick narrowing of the search space
when looking for a cause to diagnose an abnormality since
only causes whose duration intersects the time the effect was
seen are of interest.

Analysis by the processor 116 starts with a simple policy
that classifies possible causes as a root cause (e.g., a compo-
nent was added to the configuration) or an indirect effect of a
root cause (e.g., load for a component changed, due to the
addition of a component). The processor analysis can be
implemented, for example, using a general algorithm that
starts with the time the problem was seen and the component
itis on and recursively checks to see if root causes were found
on connected components with workflow dependencies
above 0 (during the period the abnormality was detected).
Indirect causes in the chain are diagnosed as well to look for
event chains. The workflow is recursively traversed in this
fashion until a root cause is reached or a cycle is detected.
Root causes found in this process are then ranked based on the
total level of workflow dependence along the chain (mea-
sured at the time the abnormality was detected).

The dependence between two directly connected compo-
nents can be treated as the weight wy, , of an edge between
two nodes i and j. The total weight for a path between node 1
and n is then calculated as:

n-1
W(ln) = 1_[ Wi i+1)
i=1

Since measures of dependence are in the range [0-1] further
down the graph, the dependence never increases. This means
that in order to quickly find the top-k causes for a problem
greedy approach can be taken, when performing the search
defined above.

Specifically, the processor 116 can be adapted to always
start the search from a node by taking the edge that has the
greatest weight and then doing a depth first search until k
causes are collected. Once k causes are collected, the proces-
sor 116 can be adapted to continue the search, without tra-
versing further down any path once its dependence is smaller
than the dependence for the kth cause. All of these paths can
be skipped, since the dependence will not increase if the path
is traversed any further. Ifthe processor 116 identifies a cause
with a higher dependence after the initial top-k are deter-
mined, it can be adapted to add that cause to the top-k and
drop the kth cause. If the processor 116 does not determine
any root causes, then it can be adapted to return the top-k
connected abnormalities ranked by level of workflow depen-
dence in order to provide some suggestions to the adminis-
trator.

After the impact of the change on the end-to-end perfor-
mance is diagnosed by the processor 116, it can be adapted to
store this cause-eftect relationship mapping (e.g., in the com-
mon events database 114) so it does not have to be re-diag-
nosed.



US 8,655,623 B2

19

Also disclosed is a program storage device readable by
computer and tangibly embodying a program of instructions
executable by that computer to perform the method the inven-
tion, described above. Specifically, the embodiments of the
invention can take the form of an entirely hardware embodi-
ment, an entirely software embodiment or an embodiment
including both hardware and software elements. In a pre-
ferred embodiment, the invention is implemented in software,
which includes but is not limited to firmware, resident soft-
ware, microcode, etc. Furthermore, the embodiments of the
invention can take the form of a computer program product
accessible from a computer-usable or computer-readable
medium providing program code for use by or in connection
with a computer or any instruction execution system. For the
purposes of this description, a computer-usable or computer
readable medium can be any apparatus that can comprise,
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution system,
apparatus, or device. The medium can be an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system (or apparatus or device) or a propagation medium.
Examples of a computer-readable medium include a semi-
conductor or solid state memory, magnetic tape, a removable
computer diskette, a random access memory (RAM), a read-
only memory (ROM), a rigid magnetic disk and an optical
disk. Current examples of optical disks include compact
disk—read only memory (CD-ROM), compact disk—read/
write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output (I/O) devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

A representative hardware environment for practicing the
embodiments of the invention is depicted in FIG. 8. This
schematic drawing illustrates a hardware configuration of an
information handling/computer system in accordance with
the embodiments of the invention. The system comprises at
least one processor or central processing unit (CPU) 10. The
CPUs IO are interconnected via system bus 12 to various
devices such as a random access memory (RAM) 14, read-
only memory (ROM) 16, and an input/output (I/O) adapter
18. The I/O adapter 18 can connect to peripheral devices, such
as disk units 11 and tape drives 13, or other program storage
devices that are readable by the system. The system can read
the inventive instructions on the program storage devices and
follow these instructions to execute the methodology of the
embodiments of the invention. The system further includes a
user interface adapter 19 that connects a keyboard 15, mouse
17, speaker 24, microphone 22, and/or other user interface
devices such as a touch screen device (not shown) to the bus
12 to gather user input. Additionally, a communication
adapter 20 connects the bus 12 to a data processing network
25, and a display adapter 21 connects the bus 12 to a display

10

20

25

30

35

40

45

55

60

65

20

device 23 which may be embodied as an output device such as
a monitor, printer, or transmitter, for example.
Therefore, disclosed above are system and method
embodiments for determining the root-causes of a perfor-
mance objective violation, such as an end-to-end service level
objection (SLO) violation, in a large-scale system with multi-
tiered applications. This determination is made using a hybrid
of component-level snapshots of the state of the system dur-
ing a period in which an abnormal event occurred (i.e., black
box mapping) and of known events and their causes (i.e.,
white-box mapping). Specifically, in response to a query
about a violation (e.g., why did the response time for appli-
cation al increase from r1 to r2), a processor will access and
correlate the black-box and white-box mappings to determine
a short-list of probable causes for the violation.
The foregoing description of the specific embodiments will
so fully reveal the general nature of the invention that others
can, by applying current knowledge, readily modify and/or
adapt for various applications such specific embodiments
without departing from the generic concept, and, therefore,
such adaptations and modifications should and are intended
to be comprehended within the meaning and range of equiva-
lents of the disclosed embodiments. It is to be understood that
the phraseology or terminology employed herein is for the
purpose of description and not of limitation. Therefore, those
skilled in the art will recognize that the embodiments of the
invention can be practiced with modification within the spirit
and scope of the appended claims.
What is claimed is:
1. A diagnostic system for a storage system comprising:
a monitoring system comprising a plurality of monitoring
agents periodically collecting measured performance
parameter data from components of said storage system,
said components being within an invocation path of a
specific application being run by said storage system,
said components comprising multiple different types of
components and said multiple different types of compo-
nents comprising any of servers, interconnect switches,
controllers and disks;
an abnormality detection system automatically and peri-
odically updating normal performance models for said
components and, based on said normal performance
models, identifying abnormal events occurring in said
invocation path during running of said specific applica-
tion by said storage system,
said updating of said normal performance models com-
prising, as said measured performance parameter data
is collected, automatically sorting said measured per-
formance parameter data into clusters and recalculat-
ing centroids of said clusters, and

said abnormal events being associated with any of said
measured performance parameter data outside a pre-
determined threshold distance from a closest one of
said centroids;

a state generator in communication with said monitoring
system and said abnormality detection system, said state
generator determining when at least one of said abnor-
mal events identified by said abnormality detection sys-
tem is a triggering condition as defined by a predeter-
mined policy and, only in response to said triggering
condition occurring during said running of said specific
application, operating to identify different states of said
components,
said operating comprising, based on said measured per-

formance parameter data from said components,
identifying first states of said components at a begin-
ning point in a given time interval and second states of



US 8,655,623 B2

21

said components at an end point in said given time
interval and, based on a comparison of said first states
and said second states, further identifying any state
changes exhibited by any of said components
between said beginning point and said end point,

for each component, said beginning point being when
said measured performance parameter data was most
recently collected from said component prior to the
occurrence of said triggering condition and said end
point being when said measured performance param-
eter data is next collected from said component after
said occurrence of said triggering condition, and;

a database comprising a list of common events that occur
within said storage system and that are known to impact
performance of said components of said storage system,
said list indicating which of said components are known
to be affected by which of said common events; and

a processor receiving a report of an end-to-end perfor-
mance objective violation of said specific application as
run by said storage system, said violation occurring in a
specified time period and said processor further deter-
mining which of said state changes occurred during said
specified time period, identifying specific abnormal
events associated with said state changes that occurred
during said specific time period and correlating said
common events on said list with said specific abnormal
events in order to determine a set of events that are
probable causes for said violation.

2. The diagnostic system of claim 1, said list further indi-
cating changes in dynamic dependencies resulting from said
common events and said processor further considering said
changes in said dynamic dependencies during said correlat-
ing to determine said set of events.

3. The diagnostic system of claim 1, said monitoring agents
sensing measurable performance parameters from said com-
ponents.

4. The diagnostic system of claim 1, said recalculating of
said centroids comprising applying a decay factor that gives
greater weight to newly collected data in said clusters as
compared to previously collected data.

5. The diagnostic system of claim 1, said policy defining
said triggering condition as any one of the following: identi-
fication of any one abnormal event, identification of any one
specified type of abnormal event, identification of a specified
number of any type of abnormal event and identification of a
specified number of a specified type of abnormal event.

6. The diagnostic system of claim 1, said abnormal events
comprising system-induced abnormal events and human-in-
duced abnormal events and said common events comprising
commonly occurring system-induced events and commonly
occurring human-induced events.

7. The diagnostic system of claim 1, said state changes
comprising run-time changes that will impact at least one of
workload access, cumulative load, response-time and
throughput for a given load characteristic, dependencies and
workflow of said specific application.

8. A diagnostic method comprising:

periodically collecting, by a plurality of monitoring agents
of'a monitoring system, measured performance param-
eter data from components of a storage system, said
components being within an invocation path of a specific
application being run by said storage system, said com-
ponents comprising multiple different types of compo-
nents and said multiple different types of components
comprising any of servers, interconnect switches, con-
trollers and disks;

20

25

40

45

50

55

22

automatically and periodically updating, by an abnormal-
ity detection system normal performance models for
said components, said updating of said normal perfor-
mance models comprising, as said measured perfor-
mance parameter data is collected, automatically sorting
said measured performance parameter data into clusters
and recalculating centroids of said clusters;

identifying, by said abnormality detection system and
based on said normal performance models, abnormal
events occurring in said invocation path during running
of said specific application by said storage system, said
abnormal events being associated with any of said mea-
sured performance parameter data outside a predeter-
mined threshold distance from a closest one of said
centroids;
storing, in a database, a list of common events that occur
within said storage system and that are known to impact
performance of said components of said storage system,
said list indicating which of said components are known
to be affected by which of said common events;

determining, by a state generator in communication with
said monitoring system and said abnormality detection
system, when at least one of said abnormal events iden-
tified by said abnormality detection system is a trigger-
ing condition as defined by a predetermined policy;

only in response to said triggering condition, identifying,
by said state generator, first states of said components at
a beginning point in a given time interval and second
states of said components at an end point in said given
time interval, based on said measured performance
parameter data;

based on a comparison of said first states and said second

states, identifying, by said state generator, any state
changes exhibited by any of said components between
said beginning point and said end point,
for each component, said beginning point being when
said measured performance parameter data was most
recently collected from said component prior to the
occurrence of said triggering condition and said end
point being when said measured performance param-
eter data is next collected from said component after
said occurrence of said triggering condition;
receiving, by a processor, a report of an end-to-end perfor-
mance objective violation of said specific application as
run by said storage system, said violation occurring in a
specified time period;

determining, by said processor, which of said state changes

occurred during said specified time period and identify-
ing specific abnormal events associated with said state
changes that occurred during said specific time period;
and

correlating, by said processor, said common events on said

list with said specific abnormal events in order to deter-
mine a set of events that are probable causes for said
violation.

9. The method of claim 8, said list further indicating
changes in dynamic dependencies resulting from said com-
mon events and said method further comprising, during said
correlating, considering said changes in said dynamic depen-
dency to determine said set of events.

10. The method of claim 8, said monitoring agents sensing
said measurable performance parameters from said compo-
nents.

11. The method of claim 8, said recalculating of said cen-
troids comprising applying a decay factor that gives greater
weight to newly collected data in said clusters as compared to
previously collected data.



US 8,655,623 B2

23

12. The method of claim 8, said policy defining said trig-
gering condition as any one of the following: identification of
any one abnormal event, identification of any one specified
type of abnormal event, identification of a specified number
of any type of abnormal event and identification of a specified
number of a specified type of abnormal event.

13. The method of claim 8, said abnormal events compris-
ing system-induced abnormal events and human-induced
abnormal events and said common events comprising com-
monly occurring system-induced events and commonly
occurring human-induced events.

14. The method of claim 8, said state changes comprising
run-time changes that will impact at least one of workload
access, cumulative load, response-time and throughput for a
given load characteristic, dependencies and workflow of said
specific application.

15. A non-transitory program storage device readable by
computer and tangibly embodying a program of instructions
executable by said computer to perform a diagnostic method,
said diagnostic method comprising:

periodically collecting measured performance parameter

data from components of a storage system, said compo-
nents being in an invocation path of a specific applica-
tion being run by said storage system, said components
comprising multiple different types of components and
said multiple different types of components comprising
any of servers, interconnect switches, controllers and
disks;

automatically and periodically updating normal perfor-

mance models for said components, said updating of
said normal performance models comprising, as said
measured performance parameter data is collected,
automatically sorting said measured performance
parameter data into clusters and recalculating centroids
of said clusters;

identifying, based on said normal performance models,

abnormal events occurring in said invocation path dur-
ing running of said specific application by said storage
system, said abnormal events being associated with any
of said measured performance parameter data outside a
predetermined threshold distance from a closest one of
said centroids;

storing a list of common events that occur within said

storage system and that are known to impact perfor-
mance of said components of said storage system, said
list indicating which of said components are known to be
affected by which of said common events;

40

45

24

determining when at least one of said abnormal events is a
triggering condition as defined by a predetermined
policy;

only in response to said triggering condition, identifying,
based on said measured performance parameter data,
first states of said components at a beginning point in a
giventime interval and second states of said components
at an end point in said given time interval;

based on a comparison of said first states and said second
states, further identifying any state changes exhibited by
any of said components between said beginning point
and said end point,
for each component, said beginning point being when

said measured performance parameter data was most
recently collected from said component prior to the
occurrence of said triggering condition and said end
point being when said measured performance param-
eter data is next collected from said component after
said occurrence of said triggering condition;
receiving a report of an end-to-end performance objective
violation of said specific application as run by said stor-
age system, said violation occurring in a specified time
period;

determining which of said state changes occurred during
said specified time period;

identifying specific abnormal events associated with said
state changes that occurred during said specific time
period; and

correlating said common events on said list with said spe-
cific abnormal events in order to determine a set of
events that are probable causes for said violation.

16. The non-transitory program storage device of claim 15,
said list further indicating changes in dynamic dependencies
resulting from said common events and said method further
comprising, during said correlating, considering said changes
in said dynamic dependency to determine said set of events.

17. The non-transitory program storage device of claim 15,
said policy defining said triggering condition as any one of the
following: identification of any one abnormal event, identifi-
cation of any one specified type of abnormal event, identifi-
cation of a specified number of any type of abnormal event
and identification of a specified number of a specified type of
abnormal event.

18. The non-transitory program storage device of claim 15,
said calculating of said centroids comprising applying a
decay factor that gives greater weight to newly collected data
in said clusters as compared to previously collected data.

#* #* #* #* #*



